
www.xojo3d.comTutorial 6: Back-face culling
This document is provided to the public domain and everyone is free to use, modify, republish, sel l or give away this work without prior consent

from anybody. Content is provided without warranty of any kind. Under no circumstances shall the author(s) or contributor(s) be l iable for

damages resulting directly or indirectly from the use or non-use of the content.

1

Tutorial 6: Back-face culling

Back-face cull ing is a technique used to be more resourceful with your available processing

power. In this tutorial you wil l learn how to activate back-face cull ing in OpenGL.

www.xojo3d.comTutorial 6: Back-face culling
This document is provided to the public domain and everyone is free to use, modify, republish, sel l or give away this work without prior consent

from anybody. Content is provided without warranty of any kind. Under no circumstances shall the author(s) or contributor(s) be l iable for

damages resulting directly or indirectly from the use or non-use of the content.

2

Theory

From the above il lustrations it is easy to see that when OpenGL renders a collection of polygons,

al l the polygons facing away from us can be ignored, since their front surface is not visible from

where we are standing. The process of skipping over polygons that are facing away from us, to

save processing time, is better known as back-face culling .

OpenGL has built-in support for back-face cull ing, so it is simply a matter of enabling back-face

cull ing during our initial ization routine.

The vertices of a polygon is always defined in an anti-clockwise order, so that the computer

knows which way the polygon is facing.

Front View Back View

www.xojo3d.comTutorial 6: Back-face culling
This document is provided to the public domain and everyone is free to use, modify, republish, sel l or give away this work without prior consent

from anybody. Content is provided without warranty of any kind. Under no circumstances shall the author(s) or contributor(s) be l iable for

damages resulting directly or indirectly from the use or non-use of the content.

3

Tutorial Steps

1 . Open Xojo.

2. In the Project Chooser select Desktop.

3. Enter "Tutorial006" as the Application Name, and click OK.

4. Save your project.

5. Configure the fol lowing controls:

6. Position and size Surface to fi l l the whole window, and set its locking to left, top, bottom and

right.

7. Add the fol lowing code to the SurfaceWindow.Open event handler:

Self. MouseCursor = System. Cursors. StandardPointer

8. Add the fol lowing code to the SurfaceWindow.Paint event handler:

Surface. Render

9. Import the X3Core module, created in the previous tutorial .

You can download the module from http://www.xojo3d.com/tutorials/tut006/x3core.zip.

1 0. Add the fol lowing code to the Surface.Resized event handler:

X3_SetPerspective Surface

11 . Add the fol lowing method to module X3Core:

Sub X3_Initialize()

OpenGL. glCullFace OpenGL. GL_BACK

OpenGL. glEnable OpenGL. GL_CULL_FACE

End Sub

1 2. Add the fol lowing code to the Surface.Open event handler:

X3_Initialize

www.xojo3d.comTutorial 6: Back-face culling
This document is provided to the public domain and everyone is free to use, modify, republish, sel l or give away this work without prior consent

from anybody. Content is provided without warranty of any kind. Under no circumstances shall the author(s) or contributor(s) be l iable for

damages resulting directly or indirectly from the use or non-use of the content.

4

Dim i, j As Integer

Dim polygon() As X3Core. X3Polygon

Dim poly As X3Core. X3Polygon

poly = new X3Core. X3Polygon()

poly. FillColor = new X3Core. X3Color(0, 1, 0)

poly. Vertex. Append new X3Core. X3Vector(-1, 1, 0)

poly. Vertex. Append new X3Core. X3Vector(1, -1, 0)

poly. Vertex. Append new X3Core. X3Vector(1, 1, 0)

polygon. Append poly

poly = new X3Core. X3Polygon()

poly. FillColor = new X3Core. X3Color(1, 0, 0)

poly. Vertex. Append new X3Core. X3Vector(-1, 1, 0)

poly. Vertex. Append new X3Core. X3Vector(1, -1, 0)

poly. Vertex. Append new X3Core. X3Vector(-1, -1, 0)

polygon. Append poly

OpenGL. glPushMatrix

OpenGL. glClearColor(0, 0, 0, 1)

OpenGL. glClear(OpenGL. GL_COLOR_BUFFER_BIT)

OpenGL. glTranslatef 0. 0, 0. 0, -3. 0

OpenGL. glBegin OpenGL. GL_TRIANGLES

for i = 0 to polygon. Ubound

poly = polygon(i)

if poly. FillColor <> nil then

OpenGL. glColor3d(poly. FillColor. Red, poly. FillColor. Green,

poly. FillColor. Blue)

else

OpenGL. glColor3d(1, 1, 1)

end if

// continue on next page

1 3. Add the fol lowing code to the Surface.Render event handler:

www.xojo3d.comTutorial 6: Back-face culling
This document is provided to the public domain and everyone is free to use, modify, republish, sel l or give away this work without prior consent

from anybody. Content is provided without warranty of any kind. Under no circumstances shall the author(s) or contributor(s) be l iable for

damages resulting directly or indirectly from the use or non-use of the content.

5

1 4. Save and run your project.

// continued from previous page

for j = 0 to poly. Vertex. Ubound

OpenGL. glVertex3d poly. Vertex(j) . X, poly. Vertex(j) . Y,

poly. Vertex(j) . Z

next j

next i

OpenGL. glEnd

OpenGL. glPopMatrix

Analysis

X3Core.X3_Initialize:

Sub X3_Initialize()

OpenGL. glCullFace OpenGL. GL_BACK

OpenGL. glEnable OpenGL. GL_CULL_FACE

End Sub

Enabling back-face cull ing is common to almost every OpenGL application, so we've

created an initial ization method that can be used in any OpenGL project.

First we set the cull ing mode to back-facing polygons with a call to glCullFace. We

then enable face cull ing with a call to glEnable, passing the GL_CULL_FACE constant

as a parameter. All polygons facing away from us wil l now be ignored by the OpenGL

rendering routines.

Surface.Open:

X3_Initialize

A call to X3_Initial ize, in the Open event handler of the OpenGL surface, enables

back-face cull ing.

Surface.Render:

Dim i, j As Integer

Dim polygon() As X3Core. X3Polygon

Dim poly As X3Core. X3Polygon

// continue on next page

www.xojo3d.comTutorial 6: Back-face culling
This document is provided to the public domain and everyone is free to use, modify, republish, sel l or give away this work without prior consent

from anybody. Content is provided without warranty of any kind. Under no circumstances shall the author(s) or contributor(s) be l iable for

damages resulting directly or indirectly from the use or non-use of the content.

6

poly = new X3Core. X3Polygon()

poly. FillColor = new X3Core. X3Color(0, 1, 0)

poly. Vertex. Append new X3Core. X3Vector(-1, 1, 0)

poly. Vertex. Append new X3Core. X3Vector(1, -1, 0)

poly. Vertex. Append new X3Core. X3Vector(1, 1, 0)

polygon. Append poly

poly = new X3Core. X3Polygon()

poly. FillColor = new X3Core. X3Color(1, 0, 0)

poly. Vertex. Append new X3Core. X3Vector(-1, 1, 0)

poly. Vertex. Append new X3Core. X3Vector(1, -1, 0)

poly. Vertex. Append new X3Core. X3Vector(-1, -1, 0)

polygon. Append poly

OpenGL. glPushMatrix

OpenGL. glClearColor(0, 0, 0, 1)

OpenGL. glClear(OpenGL. GL_COLOR_BUFFER_BIT)

OpenGL. glTranslatef 0. 0, 0. 0, -3. 0

OpenGL. glBegin OpenGL. GL_TRIANGLES

for i = 0 to polygon. Ubound

poly = polygon(i)

if poly. FillColor <> nil then

OpenGL. glColor3d(poly. FillColor. Red, poly. FillColor. Green,

poly. FillColor. Blue)

else

OpenGL. glColor3d(1, 1, 1)

end if

for j = 0 to poly. Vertex. Ubound

OpenGL. glVertex3d poly. Vertex(j) . X, poly. Vertex(j) . Y,

poly. Vertex(j) . Z

next j

next i

OpenGL. glEnd

OpenGL. glPopMatrix

www.xojo3d.comTutorial 6: Back-face culling
This document is provided to the public domain and everyone is free to use, modify, republish, sel l or give away this work without prior consent

from anybody. Content is provided without warranty of any kind. Under no circumstances shall the author(s) or contributor(s) be l iable for

damages resulting directly or indirectly from the use or non-use of the content.

7

Notice how we defined two polygons in our rendering method, yet only one polygon is

displayed when we run the program. This is because the second (red) polygon is

facing away from us. Because we enabled back-face cull ing, the red polygon is

ignored by OpenGL. To test the effect of back-face cull ing, comment out the

X3_Initial ize call in Surface.Open and run the program again. You wil l now see both

polygons.

IMPORTANT: The vertices of a polygon is always defined in an anti-clockwise order,

so that OpenGL knows which way the polygon is facing.

