
www.xojo3d.comTutorial 7: OpenGL depth buffer
This document is provided to the public domain and everyone is free to use, modify, republish, sel l or give away this work without prior consent

from anybody. Content is provided without warranty of any kind. Under no circumstances shall the author(s) or contributor(s) be l iable for

damages resulting directly or indirectly from the use or non-use of the content.

1

Tutorial 7: OpenGL depth buffer

The OpenGL depth buffer prevents polygons at the back from being drawn over polygons in the

front. Learn in this tutorial how to use the OpenGL depth buffer.

www.xojo3d.comTutorial 7: OpenGL depth buffer
This document is provided to the public domain and everyone is free to use, modify, republish, sel l or give away this work without prior consent

from anybody. Content is provided without warranty of any kind. Under no circumstances shall the author(s) or contributor(s) be l iable for

damages resulting directly or indirectly from the use or non-use of the content.

2

Theory

In the il lustration above, the yellow square is drawn first. By the time that the red triangle is

drawn, there is no way to determine if the pixels of the red triangle is in front or behind the yellow

pixels on the surface at position A an B. This is where the depth buffer comes into play. Prior to

drawing the red pixels, we first check the depth buffer at position A and B, to make sure the red

pixels are in front of the yellow pixels. In the example above, the red pixels are behind the yellow

pixels, and therefore not plotted onto the surface.

OpenGL has built-in depth testing, and we simply need to enable it to ensure that our polygons

are drawn correctly.

The OpenGL depth buffer stores depth information about each pixel drawn onto our surface.

Since our surface is a 2-dimensional surface that only uses X and Y values, the depth buffer

essential ly provides a way to store the Z value of a pixel.

The information in the depth buffer is used to determine if the pixels of a polygon, is in front or

behind the pixels that are already drawn onto the surface at the same location.

www.xojo3d.comTutorial 7: OpenGL depth buffer
This document is provided to the public domain and everyone is free to use, modify, republish, sel l or give away this work without prior consent

from anybody. Content is provided without warranty of any kind. Under no circumstances shall the author(s) or contributor(s) be l iable for

damages resulting directly or indirectly from the use or non-use of the content.

3

Tutorial Steps

1 . Open Xojo.

2. In the Project Chooser select Desktop.

3. Enter "Tutorial007" as the Application Name, and click OK.

4. Save your project.

5. Configure the fol lowing controls:

6. Position and size Surface to fi l l the whole window, and set its locking to left, top, bottom and

right.

7. Add the fol lowing code to the SurfaceWindow.Open event handler:

Self. MouseCursor = System. Cursors. StandardPointer

8. Add the fol lowing code to the SurfaceWindow.Paint event handler:

Surface. Render

9. Import the X3Core module, created in the previous tutorial .

You can download the module from http://www.xojo3d.com/tutorials/tut007/x3core.zip.

1 0. Add the fol lowing code to the Surface.Resized event handler:

X3_SetPerspective Surface

11 . Replace the code in the X3Core.X3_Initialize method with the fol lowing:
OpenGL. glEnable OpenGL. GL_DEPTH_TEST

OpenGL. glDepthMask OpenGL. GL_TRUE

OpenGL. glCullFace OpenGL. GL_BACK

OpenGL. glEnable OpenGL. GL_CULL_FACE

1 2. Add the fol lowing code to the Surface.Open event handler:

X3_Initialize

www.xojo3d.comTutorial 7: OpenGL depth buffer
This document is provided to the public domain and everyone is free to use, modify, republish, sel l or give away this work without prior consent

from anybody. Content is provided without warranty of any kind. Under no circumstances shall the author(s) or contributor(s) be l iable for

damages resulting directly or indirectly from the use or non-use of the content.

4

Dim i, j As Integer

Dim polygon() As X3Core. X3Polygon

Dim poly As X3Core. X3Polygon

poly = new X3Core. X3Polygon()

poly. FillColor = new X3Core. X3Color(1, 1, 0)

poly. Vertex. Append new X3Core. X3Vector(-1. 2, 0. 8, 0)

poly. Vertex. Append new X3Core. X3Vector(-1. 2, -1. 2, 0)

poly. Vertex. Append new X3Core. X3Vector(0. 8, -1. 2, 0)

polygon. Append poly

poly = new X3Core. X3Polygon()

poly. FillColor = new X3Core. X3Color(1, 0, -1)

poly. Vertex. Append new X3Core. X3Vector(-1, 1, -1)

poly. Vertex. Append new X3Core. X3Vector(1, -1, -1)

poly. Vertex. Append new X3Core. X3Vector(1, 1, -1)

polygon. Append poly

poly = new X3Core. X3Polygon()

poly. FillColor = new X3Core. X3Color(1, 0, -1)

poly. Vertex. Append new X3Core. X3Vector(-1, 1, -1)

poly. Vertex. Append new X3Core. X3Vector(-1, -1, -1)

poly. Vertex. Append new X3Core. X3Vector(1, -1, -1)

polygon. Append poly

OpenGL. glPushMatrix

OpenGL. glClearColor(0, 0, 0, 1)

OpenGL. glClear(OpenGL. GL_COLOR_BUFFER_BIT +

OpenGL. GL_DEPTH_BUFFER_BIT)

OpenGL. glTranslatef 0. 0, 0. 0, -3. 0

OpenGL. glBegin OpenGL. GL_TRIANGLES

for i = 0 to polygon. Ubound

poly = polygon(i)

// continue on next page

1 3. Add the fol lowing code to the Surface.Render event handler:

www.xojo3d.comTutorial 7: OpenGL depth buffer
This document is provided to the public domain and everyone is free to use, modify, republish, sel l or give away this work without prior consent

from anybody. Content is provided without warranty of any kind. Under no circumstances shall the author(s) or contributor(s) be l iable for

damages resulting directly or indirectly from the use or non-use of the content.

5

1 4. Save and run your project.

// continued from previous page

if poly. FillColor <> nil then

OpenGL. glColor3d(poly. FillColor. Red, poly. FillColor. Green,

poly. FillColor. Blue)

else

OpenGL. glColor3d(1, 1, 1)

end if

for j = 0 to poly. Vertex. Ubound

OpenGL. glVertex3d poly. Vertex(j) . X, poly. Vertex(j) . Y,

poly. Vertex(j) . Z

next j

next i

OpenGL. glEnd

OpenGL. glPopMatrix

Analysis

X3Core.X3_Initialize:

OpenGL. glEnable OpenGL. GL_DEPTH_TEST

OpenGL. glDepthMask OpenGL. GL_TRUE

OpenGL. glCullFace OpenGL. GL_BACK

OpenGL. glEnable OpenGL. GL_CULL_FACE

In the initial ization routine, we enable OpenGL depth testing with the first instruction.

The glDepthMask call enables writing into the depth buffer. The last two lines enable

back-face cull ing l ike explained in the previous tutorial .

Surface.Render:

Dim i, j As Integer

Dim polygon() As X3Core. X3Polygon

Dim poly As X3Core. X3Polygon

poly = new X3Core. X3Polygon()

poly. FillColor = new X3Core. X3Color(1, 1, 0)

poly. Vertex. Append new X3Core. X3Vector(-1. 2, 0. 8, 0)

// continue on next page

www.xojo3d.comTutorial 7: OpenGL depth buffer
This document is provided to the public domain and everyone is free to use, modify, republish, sel l or give away this work without prior consent

from anybody. Content is provided without warranty of any kind. Under no circumstances shall the author(s) or contributor(s) be l iable for

damages resulting directly or indirectly from the use or non-use of the content.

6

poly. Vertex. Append new X3Core. X3Vector(-1. 2, -1. 2, 0)

poly. Vertex. Append new X3Core. X3Vector(0. 8, -1. 2, 0)

polygon. Append poly

poly = new X3Core. X3Polygon()

poly. FillColor = new X3Core. X3Color(1, 0, -1)

poly. Vertex. Append new X3Core. X3Vector(-1, 1, -1)

poly. Vertex. Append new X3Core. X3Vector(1, -1, -1)

poly. Vertex. Append new X3Core. X3Vector(1, 1, -1)

polygon. Append poly

poly = new X3Core. X3Polygon()

poly. FillColor = new X3Core. X3Color(1, 0, -1)

poly. Vertex. Append new X3Core. X3Vector(-1, 1, -1)

poly. Vertex. Append new X3Core. X3Vector(-1, -1, -1)

poly. Vertex. Append new X3Core. X3Vector(1, -1, -1)

polygon. Append poly

OpenGL. glPushMatrix

OpenGL. glClearColor(0, 0, 0, 1)

OpenGL. glClear(OpenGL. GL_COLOR_BUFFER_BIT +

OpenGL. GL_DEPTH_BUFFER_BIT)

OpenGL. glTranslatef 0. 0, 0. 0, -3. 0

OpenGL. glBegin OpenGL. GL_TRIANGLES

for i = 0 to polygon. Ubound

poly = polygon(i)

if poly. FillColor <> nil then

OpenGL. glColor3d(poly. FillColor. Red, poly. FillColor. Green,

poly. FillColor. Blue)

else

OpenGL. glColor3d(1, 1, 1)

end if

for j = 0 to poly. Vertex. Ubound

OpenGL. glVertex3d poly. Vertex(j) . X, poly. Vertex(j) . Y,

poly. Vertex(j) . Z

next j

www.xojo3d.comTutorial 7: OpenGL depth buffer
This document is provided to the public domain and everyone is free to use, modify, republish, sel l or give away this work without prior consent

from anybody. Content is provided without warranty of any kind. Under no circumstances shall the author(s) or contributor(s) be l iable for

damages resulting directly or indirectly from the use or non-use of the content.

7

When you study the rendering code, you wil l notice that we have two shapes made

from three polygons. A yellow triangle closer to us and a red square in the distance.

I t is important to note that we need to pass the GL_DEPTH_BUFFER_BIT constant to

the glClear function, to clear the depth buffer before we start rendering our scene.

The important lesson to take from this code is that, even though we draw the red

square after the yellow triangle, the red surface does not cover any part of the yellow

surface, because the square is actual ly behind the triangle.

You can test the effect that depth testing has on rendering, by commenting out the first

two lines in the X3_Initial ize method. See how the red surface now covers the yellow

surface.

